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Abstract. We present a simple model for the possible mechanism of appearance of attraction between like
charged polyions inside a polyelectrolyte solution. The attraction is found to be short ranged, and exists
only in the presence of multivalent counterions. It is produced by the correlations in layers of condensed
counterions surrounding each polyion and is only weakly temperature dependent. We find the attraction
to be maximum at zero temperature and dimish as the temperature is raised. The attraction is only
possible if the number of condensed counterions exceeds the threshold, n > Z/2a, where « is the valence

of counterions and Z is the polyion charge.

PACS. 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc. — 61.25.Hq Macromolecular

and polymer solutions; polymer melts; swelling

Polyelectrolyte solutions and charged colloidal suspen-
sions present an outstanding challenge to modern sta-
tistical mechanics. One of the reasons for the great
difficulty in achieving an understanding of these complex
systems is due to the intricate role played by the coun-
terions (microions) which counterbalance the much big-
ger charge of the polyions (macroions). Since the num-
ber density of counterions is so much greater than that
of polyions it is the counterions that dominate the ther-
modynamic properties of polyelectrolyte solutions at low
densities. The heterogeneity combined with the long-range
Coulomb force makes polyelectrolytes almost impossible
to study by the traditional methods of liquid state theory.
It is, however, exactly this complexity that is responsible
for the richness of the behaviors encountered in polyelec-
trolyte solutions and charged suspensions.

One of the most fascinating results of the subtle in-
terplay of various interactions is the appearance of at-
traction between two like-charged macromolecules inside
a solution or a suspension. This attraction is purely elec-
trostatic and is not a result of some additional short-
range van der Waals force. The attraction has been ob-
served in simulations of strongly asymmetric electrolytes
[1], as well as a number of experiments [2]. The exact
mechanism responsible for this unusual phenomena is still
not understood, although some theories attempting to ex-
plain its basis, have been recently advanced [3,4]. At this
time, we believe, there exists a great need to explore vari-
ous simple models which might help shed additional light
on the origin of this attraction.
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Our discussion will be restricted to rodlike polyelec-
trolytes, a good example of which is an aqueous so-
lution of DNA segments. Let us consider the simplest
model of such a polyelectrolyte solution. The polyions
shall be represented by rigid cylinders of net charge —Zq
distributed uniformly, with separation b, along the ma-
jor axis of a macromolecule. The counterions shall be
treated as small rigid spheres of charge ag located at
the center. The counterions can be monovalent, diva-
lent, or trivalent, for simplicity however, we shall re-
strict our solution to contain only one of the above
types of counterions. An appropriate number of coions
is also present in the solution to keep an overall charge
neutrality. The solvent shall be modeled by a uniform
medium of a dielectric constant D. It has been argued
by Manning that in the limit of very large Z and infi-
nite dilution, a certain number of counterions will con-
dense onto the polyions, thus renormalizing their effec-
tive charge. From a simple phenomenological argument
Manning determined the number of condensed counteri-
ons to be n. = (1 —1/af)Z/a for £ > 1/ and n. = 0
for £ < 1/a, where £ = ¢?/DkgTh [6]. Note that this re-
sult subtly depends on the order of the limits to be taken,
first Z — oo and then the infinite dilution. If the limits
are interchanged no condensation will appear. Recently
we have extended the Manning theory to finite concentra-
tions and finite polyion sizes. In this case it is possible to
show that the counterion association still persists, how-
ever, instead of a fixed number of condensed counterions
associated with each polyion, we now find a distribution of
clusters, each composed of one polyion and 1 <m < Z/«
associated counterions. The distribution of cluster sizes
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is well localized, and in the limit of large polyion charge
and infinite dilution approaches a delta function centered
on the value proposed by Manning, n [7].

Can the condensed layer of counterions be responsi-
ble for the observed attraction between two like charged
polyions? To answer this question we propose the
following simple model. Consider two parallel, rodlike
polyions, with Z monomers, inside the polyelectrolyte so-
lution. The separation between two macromolecules is
d. If the attraction is produced by some sort of charge-
correlation mechanism, we expect that it should be short-
ranged. We shall, therefore, restrict our attention to
distances such that d < £p, where {p is the Debye screen-
ing length. As was mentioned earlier, the strong electro-
static attraction between the polyions and the counte-
rions favors the formation of clusters composed of one
polyion and some number of associated counterions. For
the purpose of this exposition, we shall neglect the poly-
dispersity of cluster sizes and assume that both polyions
have n < Z/a condensed counterions. It is important
to remember that we are concerned with the interaction
between the two polyions inside a polyelectrolyte solu-
tion. As was stressed before, an isolated polyion can con-
fine counterions only if it is extremely long, while inside
a solution the cluster formation can take place with the
polyions of any size [7].

The associated counterions are free to move along the
length of the polyions. We define the occupation variables
05, with 2 = 1,2,...,Z and j = 1,2, in such a way that
o;; = 1 if a counterion is attached at i’th monomer of
the j’th polyion and o;; = 0 otherwise. Since the num-
ber of condensed counterions is fixed by thermodynam-
ics [7], the values of occupation variables obey the con-
straint Zizzl o = Zizzl oi2 = n. We shall assume that
the only effect of the counterion association is a local
renormalization of the monomer charge. The Hamiltonian
for this model takes a particularly simple form,

where the sum is restricted to
(i, 431, 5') = by/|i — i[> 4+ (1 — &;;:)2? is the distance be-
tween the monomers located at (4, j) and (¢/, j), ;5 is the
Kronecker delta, and « = d/b. Clearly, the above model is
a great over-simplification of physical reality. The molec-
ular nature of the solvent is not taken into account. The
counterions are assumed to be confined to the surface of
the polyions, while the polyions themselves are treated as
completely rigid. Nevertheless, we believe that the simplic-
ity of this phenomenological model, which allows us to per-
form exact analytic calculations, compensates for its ab-
stract nature. Evidently, if we can understand under what
conditions the attraction can arise between two macro-
molecules in this idealization, in the future it might pave
the way to a more complete, physically realistic model.
With this disclaimer in mind, we proceed to rewrite
the Hamiltonian as fH = £H, where 8 = 1/kgT and £ is
the Manning parameter defined earlier. The adimensional
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reduced Hamiltonian is

H— 1 Z (1—aoij)(1—aai/j/) ) (2)
2 (1.5) (0" 5) \/|Z — i,|2 + (]. — (Sjj/)fEZ

Using a transformation of occupation variables defined
by agj = 1 — 0y; it is easy to see that the Hamiltonian
exhibits the following symmetry

H(Zaaa {U}) - (a_ 1)2H(Za 0‘/7{01})5 (3)

wheren’ =Z —nand o/ =1+1/(a—1).
The partition function is

Q= "exp(-pH)= 3 ‘exp(~¢H), (@)
{oi;} {oi;}

where the prime indicates that the occupation numbers
are subjected to the constraint of conservation of the
number of condensed counterion. The symmetry relation
(3) leads to invariance of the partition function, and any
thermodynamic quantity derived from it, Q(Z,n,{, a) =
Q(Z,Z —n,[a—1]%¢,1+1/[a—1]). This property is quite
useful when performing the calculations, since it reduces
the ranges of parameters needed to study.

It is convenient to rewrite the partition function in
terms of the variables y; = exp(—=¢/i), i = 1,2,...,7Z —
1, associated with the intrapolyion interactions and

=exp(—¢/vVx?2 +1i2), i =0,1,...,Z — 1, related to the
mterpolywn interactions. The partition function, for given
values of Z and n, may be expressed as

N. Z-1

Q= IIv" H 2" (5)

i=1 j=1

where the sum runs over all the allowed configurations
of counterions. The exponents u;; and v, are quadratic
polynomials in « with integer coefficients. For not too
big values of Z, it is possible to generate on com-
puter the whole set of integers in the expression above,
thus obtaining the partition function exactly. The force
between the polyions may now be calculated through

1 8an
bﬂ Oz (6)

To simulate the model we use a standard Monte Carlo
with particle-hole exchange, not restricted to nearest-
neighbor pairs. After thermalizing, both the energy and
the force are measured, results being time and sample av-
eraged.

We find that at short distances and for a > 1 the
force between the polyions may become attractive (neg-
ative). The simulation results obtained for small values
of Z (Z < 11) are in full agreement with the exact cal-
culations. For instance, in the case of Z = 11, n = 5,

= 2, and £ = 2.283 we obtain both analytically and
numerically, SbF ~ —0.277, for x = 1.5. The agreement
is to three significant figures and can be improved fur-
ther by increasing the number Monte Carlo samples. Al-
though the forces for larger values of Z can be easily ob-
tained using simulations (see Fig. 1), the exact solution
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Fig. 1. Force versus distance between polyions for Z = 20,
a =2, & = 2.283 (corresponding to polymethacrylate) and n =
5,...,10 (from top to bottom) in the Monte Carlo simulation.
The lines are only guides to the eye.
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Fig. 2. Distance below which the polyion interaction becomes
attractive versus the number of condensed counterion in the

Monte Carlo simulation. Averages are over 100 sets and Z
ranges from 20 to 200.

demands much more memory and cpu time, which are
our main constraints. For « = 1 the force is always re-
pulsive, which is in full agreement with the experimen-
tal evidence on the absence of attraction if only monova-
lent counterions are present [2]. When the polyion charge
is completely neutralized, n = Z/«, the force becomes
purely attractive, as can be seen in Figures 1 and 2. Fur-
thermore, the exact solution and the simulations indi-
cate that a critical number of condensed counterions is
necessary for attraction to appear, see Figure 2. It is clear
that the relevant parameter is the fraction of neutralized
charge, an/Z, the curves for several values of Z (here from
20 to 200) collapsing on a universal function, deviations
occurring only for very small Z. As expected, the attrac-
tive interaction is short-ranged and at larger distances the
force becomes repulsive.

To further explore this point we consider the limit of
small z. In this case the variable zy vanishes, while for
finite £ and Z all the other variables y; and z; remain
positive definite. If we define v = min;(v; o), it is possible
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Fig. 3. Log-log plot near n = Z/2a for the a = 2 data in
Figure 2. The fit exponent is 0.32.
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(1+ P), with

W= Z H y;” H 2", (7)

=1 j=1

to rewrite the partition function as Q) = 2§

and

Z—1
P Zzowﬂy““sz LB

1=l+1

where we suppose v;g = v for the first [ of the N, config-
urations. As x — 0, the function P vanishes, and we may
use the approximation ) ~ Wzj. Then we notice that
v corresponds to the configurations which maximize the
number of favorable horizontal interpolyion interactions,

v=27-2n«a (9)

for v > 2. Using the above approximation for the partition
function we obtain

1 /10w + §v

bﬁ W oz

It is not difficult to see that the derivative of W vanishes
as ¢ — 0, so that for small z we can Taylor expand the
first term of equation (10). To leading order we find

(10)

f—bﬁFrvg— hx, (11)
where h < 0 (as v vanishes) is a function of the remaining
parameters of the model. We notice that as z — 0 the
force vanishes, if v = 0; is large attractive, if v is negative;
and is large repulsive, if v is positive. In particular, in the
limit v — 0~ the equilibrium distance is

1/3 1/3
h Z

This scaling behavior is also observed in Monte Carlo sim-
ulations in Figures 2 and 3.

We would like to stress that for a fixed number
of condensed counterions the attraction is insensitive

(12)
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Fig. 4. Temperature dependence of the force between polyions
for Z =20, n = 6, @« = 2 and several values of &: 2.283 (cir-
cles), corresponding to polymethacrylate; 4.17 (squares), cor-
responding to DNA; and 20 (triangles) for very low tempera-
tures. The inset shows the distance z¢ at which the attraction
first appears as a function of £. We see that for divalent coun-
terions, & = 1 serves as a division point for the low and high
temperatures regimes. Clearly for £ > 1 the attraction is driven
by the structure of ground state!

to the temperature (see Fig. 4). In fact the force be-
tween two lines at zero temperature (§ = oo) is almost
exactly the same as at finite temperature, as long as
the average electrostatic energy of interaction between
two condensed counterions is greater than the thermal
energy, a?q?>/Dd > kgT, where d is the average sep-
aration between the condensed counterions. The mech-
anism for attraction between two like-charged rods is
now clear [5]. At zero temperature the counterions on
the two rods will take on staggered configuration, i.e. if
the site of the first rod is occupied by a counterion the
parallel site of the second rod will stay vacant. If the
number of condensed counterions is above the threshold
n = Z/2a the favorable counterion-monomer interactions
will outnumber the unfavorable monomer-monomer inter-
actions, thus producing a net attraction at short distances.
Using the threshold value of n we find that the attraction
is dominated by the zero temperature correlations as long
as £ > 2/a. On the other hand applying the Manning con-
densation criterion to the threshold number we see that
the attraction is possible only if £ > 2/a. We thus come
to an important conclusion: if the attraction exists it is
produced by the zero temperature correlations.

In view of the current interest in the possible mecha-
nisms responsible for the attraction between like charged
objects it is worthwhile to make some further comments. A
most common approach used to study this difficult prob-
lem relies on the field theoretic methodology similar to the
one developed in Quantum Field Theory to study Casimir
forces. The partition function is mapped onto an effective
field theory which is then studied using a loop expansion.
Due to the underlying difficulty of this process the expan-
sion is usually terminated at the first loop level which is
equivalent to the so called Gaussian approximation. The
attraction, in this approach, arises as a result of the cor-
relations in the Gaussian fluctuations[3]. Clearly from the
above discussion this is not the mechanism responsible

for the attraction between the two charged rods which
was found by us. The problem with the field theoretic ap-
proaches used up to now is that the ground state energy
was not properly treated.

Instead of allowing for a staggered configuration, which
we found to be responsible for the attraction observed,
the field theoretic approaches neglect the discrete nature
of charges and uniformly smear the condensed counteri-
ons over the polyion. At zero temperature this can only
result in a repulsion. The attraction, then, appears only
as a finite temperature correction, produced by the cor-
relations in the Gaussian fluctuations of the counterion
charge densities on the two polyions, the effect which is
much weaker than the one found by us to be responsible
for the attraction.

We have presented a simple model for the possible
mechanism of appearance of attraction between the like
charged polyions inside a polyelectrolyte solution. The
attraction is found to be short ranged, and is possible
only in a presence of multivalent counterions. The attrac-
tion is produced by the correlations in the condensed lay-
ers of counterions surrounding each polyion and extends
uniformly from zero temperature. The attraction appears
only if the number of condensed counterions exceeds the
threshold, n > Z/2«. Using the counterion condensation
theory to estimate the number of associated counterions,
we see that the attraction is possible only for polyelec-
trolytes with £ > 2/a. This is the fundamental result
which has, evidently, gone unnoticed in the previous stud-
ies of this interesting phenomena.
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